Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Engineering Mathematics- IV

Subject Cod	e: 4TE04EMT2	Branch: B.Tech (All)				
Semester: 4	Date: 19/09/2022	Time: 02:30 To 05:30	Marks: 70			
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 						
Q-1 a) b)	Attempt the following question If $f(x)$ is odd function then (a). $B(\lambda) = 0$ (b). $A(\lambda) = 0$ (c) E equal to (a). $1 + \Delta$ (b). $1 - \Delta$ (c). Δ +	ns:). Both a and b (d). None of thes ∇ (d). None of these	[14] (01) Se (01)			
c)	If $f(z) = u(x, y) + iv(x, y)$ is a	analytic then $f'(z) = $	(01)			
d)	(a). $u_x + i v_x(b)$. $u_x - i v_x(c)$. u The value of $\int_c \frac{dz}{z-5}$. $C: z = 1$ (a). $2\pi i$ (b). $-2\pi i$ (c). $4\pi i$ (d	$y + 1v_x$ (d). $u_x + 1v_y$	(01)			
e)	$curl(grad\phi) = $ (a). div \vec{f} (b). 1 (c). 0	(d). gradø	(01)			
f)	Which of the following is true if (a) $\operatorname{surl} \vec{f} = \vec{0}$ (b) $\vec{f} = \vec{f}$ (c) di	a vector fis Irrotational? $\vec{k} = 0$ (d) None of these	(01)			
g)	(a). $\operatorname{Curr}_{II} = 0$ (b). $I = I$ (c). difference of the formula of the formu	cient matrix reduces into Triangular Matrix agonal Matrix	(01)			
h)	The nth difference of polynomia (a). <i>Constant</i> (b). <i>Zero</i> (c). <i>n</i>	l of degree n is (d). None of these	(01)			
i)	According to green's theorem ∮	Pdx + Qdy =	(01)			

(a).
$$\iint_{R} Pdx + Qdy$$
 (b).
$$\iint_{R} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x}\right) dxdy$$

(c).
$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$$
 (d). None of these
j) Which one of the following method is more rapid in convergence than
Gauss-Jacobi method
(a). Gauss - elimination method (b). Gauss- Jordan method
(c). Gauss Seidel method
(d). None of these
k) Putting $n = 2$ in Newton- cote's formulae, we get
(01)
(a). Trapezoidal Formula
(b). Simpson's $\frac{1}{3}$ rule
(c). Simpson's $\frac{3}{8}$ rule
(d). None of these
l) $\delta =$
(01)
(a). $\frac{\Delta}{E_{1}^{1}}(c). E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
(b). $E^{\frac{1}{2}} + E^{-\frac{1}{2}}(d)$. None of these
m) True or false: $u_{x} = v_{y}, u_{y} = -v_{x}$.
(01)
n) Write FourierCosine Integral formula.
(01)
Attempt any four questions from Q-2 to Q-8

a) Given
$$\vec{u} = xy\hat{\imath} + (2xz - y^2)\hat{\jmath} + yz\hat{k}$$
 and $v = xy + y^2z + z^2$ then (06)

find $\nabla \cdot \vec{u}$, $\nabla \cdot v$ and $\nabla \times \vec{u}$.

b) If
$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$
, show that $gradr = \hat{r}$ (04)

c) Prove that
$$\vec{f} = \frac{x\hat{\iota} + y\hat{j}}{x^2 + y^2}$$
 is Solenoidal. (04)

Q-3

Attempt all questions a) Express $f(x) = \begin{cases} e^{kx} ; x < 0 \\ e^{-kx} ; x > 0 \end{cases}$ as a fourier integral and hence show that

$$\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + k^2} d\lambda = \frac{\pi}{2k} e^{-kx}; \text{ if } x > 0, k > 0$$

b) Find the fourier transform of $e^{-a|x|}$, a > 0 and deduce that (05) $\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda = \frac{\pi}{2a} e^{-a|x|}$

c) Find the fourier cosine and sine transforms of the function (04) $f(x) = \begin{cases} kif & 0 < x < a \\ 0 & ifx > a \end{cases}$

[14] (05)

Q-4		Attempt all q	uestions		2			[14]
	a)	Show that $u(z)$	(x, y) = 2x - (x, y)	$-x^{3} + 3xy^{3}$	² is harmonic	. Also Find	Harmonic	(06)
	b)	Check the fun if possible.	action $f(z)$ =	= <i>e^z</i> satisfy	C-R Equation	on or not and	d find $f'(z)$	(04)
	c)	Determine the onto $w_1 = -5$ points of the t	Mobius Transformation	ansformatio $w_3 = 3 \text{ resp}$ on?	n that maps 2 pectively. Wh	$z_1 = 0, z_2 =$ that are the in	$z = 1, z_3 = \infty$ nvariant	(04)
Q-5		Attempt all questions						
	a)	Using Stoke's theorem, find $\oint_C 2xy^2zdx + 2x^2yzdy + (x^2y^2 - 2z)dz$, (where C is $x^2 + y^2 + z^2 = a^2$ boundry of hemi sphere.						(06)
	b)	Using Green's theorem, evaluate $\oint_C (xy + y^2)dx + dy$ where C is curve formed by $y = x^2$ and $y = x$						(06)
	c)	State Stoke's Theorem.						(02)
Q-6	a)	Attempt all g Given	uestions					[14] (05)
		$\sin 45^\circ = 0.7071$, $\sin 50^\circ = 0.7660$, $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$ then find $\sin 52^\circ$ using Newton's forward Interpolation formula.						
	b)	Use Lagrange	s interpolat	ion formula	to find the v	alue of $f(x)$) when	(05)
		x = 1.						
		x	0	2	3	6		
		$f(\mathbf{x})$	648	704	729	792		

c) If $y_0 = 3$, $y_1 = 12$, $y_2 = 81$, $y_3 = 2000$, and $y_4 = 100$ then find $\Delta^4 y_0$. (04) Also write Newton's divided difference formula.

Q-7 Attempt all questions [14] a) Obtain Picard's second approximation solution of the initial value (05) problem $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4 correct to four decimal places, given that y(0) = 0. **b**) Using Taylor series method, find y(1.1) correct to four decimal places, (05) given that $\frac{dy}{dx} = xy^{\frac{1}{3}}, y(1) = 1.$ c) Dividing the range into 10 equal parts, find the approximate value of (04) $\int_{0}^{x} \sin x \, dx$ by using simpson's $\frac{1}{3}$ rule. Q-8 Attempt all questions [14] a) Solve by using Gauss-Jordan method (05)

10x + y + z = 12, 2x + 10y + z = 13, x + y + 5z = 7

b)	b) Sove the following system by using Gauss-Seidel method			
	2x + y + z = 4, x + 2y + z = 4, x + y + 2z = 4			
c)	Show that $\sinh x \cdot \sin y$ is Harmonic function.	(04)		

c) Show that $\sinh x \cdot \sin y$ is Harmonic function.

